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Intermediate Mathematical Olympiad Hamilton paper 2021 Solutions

1. Naomi has a broken calculator. All it can do is either add one to the previous answer, or
square the previous answer. (It performs the operations correctly.) Naomi starts with 2
on the screen. In how many ways can she obtain an answer of 1000?

Solution

Solution 1

Let the notation 𝑎⇝ 𝑏 mean “keep adding 1 to 𝑎 until you reach 𝑏” (where 𝑏 ≥ 𝑎), and 𝑎 ↬ 𝑏

mean “square 𝑎 to get 𝑏”.

For example, one route to 1000 is 2⇝ 5↬ 25⇝ 30↬ 900⇝ 1000.

Note that 312 = 961 < 1000 and 322 = 1024 > 1000.

If she does not square any numbers then there is one way to obtain 1000: 2⇝ 1000.

If she squares a number once then her route to 1000 looks like this:

2⇝ 𝑛 ↬ 𝑛2⇝ 1000.

It is clear that 𝑛 can be any number with 𝑛 ≥ 2 and 𝑛2 ≤ 1000, so 𝑛 ≤ 31, that is, 𝑛 can take
any value from 2 to 31 inclusive.

There are therefore 30 ways she can obtain 1000 if she squares once.

If she squares a number twice then her route to 1000 looks like this:

2⇝ 𝑎 ↬ 𝑎2⇝ 𝑏 ↬ 𝑏2⇝ 1000,

with 2 ≤ 𝑎 < 𝑎2 ≤ 𝑏 < 𝑏2 ≤ 1000.

Since 𝑏2 ≤ 1000, 𝑏 ≤ 31, so 𝑎2 ≤ 31, that is 𝑎 ≤ 5.

If 𝑎 = 2, we have 2↬ 4⇝ 𝑏 ↬ 𝑏2⇝ 1000 so 4 ≤ 𝑏 ≤ 31 (so there are 28 choices for b).

If 𝑎 = 3, we have 2⇝ 3↬ 9⇝ 𝑏 ↬ 𝑏2⇝ 1000 so 9 ≤ 𝑏 ≤ 31 (23 choices for 𝑏).

If 𝑎 = 4, we have 2⇝ 4↬ 16⇝ 𝑏 ↬ 𝑏2⇝ 1000 so 16 ≤ 𝑏 ≤ 31 (16 choices for 𝑏).

If 𝑎 = 5, we have 2⇝ 5↬ 25⇝ 𝑏 ↬ 𝑏2⇝ 1000 so 25 ≤ 𝑏 ≤ 31 (7 choices for 𝑏).

So in total there are 28 + 23 + 16 + 7 = 74 ways she can obtain 1000 if she squares twice.

If she squares a number three times then her route looks like this:

2⇝ 𝑎 ↬ 𝑎2⇝ 𝑏 ↬ 𝑏2⇝ 𝑐 ↬ 𝑐2⇝ 1000,

with 2 ≤ 𝑎 < 𝑎2 ≤ 𝑏 < 𝑏2 ≤ 𝑐 < 𝑐2 ≤ 1000.

By an identical argument to before, we can conclude that 𝑐 ≤ 31 and 𝑏 ≤ 5, which leads to
𝑎 ≤ 2 (that is 𝑎 = 2).

So the route becomes
2↬ 4⇝ 𝑏 ↬ 𝑏2⇝ 𝑐 ↬ 𝑐2⇝ 1000,
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and we know 𝑏 = 4 or 𝑏 = 5.

If 𝑏 = 4 there are 16 choices for 𝑐 (as there were for 𝑏 above) and if 𝑏 = 5 there are 7 choices
for 𝑐 (as above).

So in total there are 16 + 7 = 23 ways she can obtain 1000 if she squares three times.

She cannot square a number four or more times, because if she does then the route which leads
to the smallest total is 2↬ 4↬ 16↬ 256↬ 2562, which is bigger than 1000.

Hence the total number of ways she can reach 1000 is 1 + 30 + 74 + 23 = 128.

Solution 2

Define 𝑓 (𝑛) to be the number of ways Naomi can reach the number 𝑛. We wish to find 𝑓 (1000).

Note that, if 𝑛 is not a square, then 𝑓 (𝑛) = 𝑓 (𝑛 − 1) (since she can only reach 𝑛 by reaching
𝑛 − 1 then adding one). If 𝑛 is a square, then 𝑓 (𝑛) = 𝑓 (𝑛 − 1) + 𝑓 (

√
𝑛) (since she could now

also reach 𝑛 by reaching
√
𝑛 then squaring).

Note that the largest square less than 1000 is 961(= 312), since 322 = 1024 > 1000. Hence
𝑓 (1000) = 𝑓 (961).

Starting from 𝑛 = 2, we have, for the first few 𝑛:

𝑓 (2) = 1, 𝑓 (3) = 1, 𝑓 (4) = 2, 𝑓 (5) = 2, . . . 𝑓 (8) = 2, 𝑓 (9) = 3.

It is immediately apparent that, as the value of 𝑛 increases, 𝑓 (𝑛) changes value only when 𝑛 is
square.

So we have 𝑓 (everything from 9 up to 15) = 3, then 𝑓 (16) = 3 + 𝑓 (4) = 3 + 2 = 5.

For every square reached between 25 and 64 (inclusive) [of which there are 4], 𝑓 (𝑛) increases
by 2 (since 𝑓 (𝑛) = 2 for 5 ≤ 𝑛 ≤ 8).

Then, as the value of 𝑛 increases:

for every square between 81 and 225 [7 squares], 𝑓 (𝑛) increases by 3 (since 𝑓 (𝑛) = 3 for
9 ≤ 𝑛 ≤ 15);

for every square between 256 and 576 [9 squares], 𝑓 (𝑛) increases by 5 (since 𝑓 (𝑛) = 5 for
16 ≤ 𝑛 ≤ 24);

for every square between 625 and 961 [7 squares], 𝑓 (𝑛) increases by 7 (since 𝑓 (𝑛) = 7 for
25 ≤ 𝑛 ≤ 31);

So 𝑓 (1000) = 𝑓 (961) = 𝑓 (16) + 2 × 4 + 3 × 7 + 5 × 9 + 7 × 7 = 128.
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2. The diagram shows two unshaded squares inside a larger square.
What fraction of the larger square is shaded?

Solution

Solution 1 Say the large square has side length 6𝑥, meaning it has area 36𝑥2.

It is clear that the bottom-left white square has dimensions half those of the large square, i.e.
the length of its sides is 3𝑥. This makes its area (3𝑥)2 = 9𝑥2.

By Pythagoras’ Theorem, the main diagonal of the large square is 𝑥
√

72 = 6𝑥
√

2.

Say the top-right square has side length 𝑠. Then, because the triangles
adjacent to it are isosceles (the two base angles are 45◦), we know 𝑠 is a
third of the diagonal of the square, or 2𝑥

√
2. Hence the area of the upper

white square is 8𝑥2.

So the total white area is 17𝑥2, which means that the total shaded area is
36𝑥2 − 17𝑥2 = 19𝑥2. Hence the total shaded area is 19

36 of the square.

B

B

B

B

Solution 2

Split the bottom-left half of the square into four congruent triangles (we
know they are congruent by the ‘RHS’ condition). Two of these cover the
white square, so the white square covers half the area of the bottom-left
triangle.

Split the top-right half of the large square into nine congruent triangles.
(Again we know that all the triangles are congruent by the ‘RHS’
condition.)

The white square is covered by four of these triangles, so the white square comprises 4
9 of the

upper-right half of the large square and the shaded area comprises 5
9 of the upper-right half of

the square.

Hence the total shaded area is 1
2 × 1

2 + 1
2 × 5

9 = 1
4 + 5

18 = 9
36 + 10

36 = 19
36 of the whole square.
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3. For how many positive integers 𝑛 less than 200 is 𝑛𝑛 a cube and (𝑛 + 1)𝑛+1 a square?

Solution

For 𝑛𝑛 to be a cube, we require either that 𝑛 is a multiple of 3 or that 𝑛 is a cube (or both).

For (𝑛 + 1)𝑛+1 to be a square, we require either that (𝑛 + 1) is even or that (𝑛 + 1) is a square (or
both).

We can take one from each of these pairs of criteria, giving four cases, and count the total:

(a) 𝑛 is a multiple of 3 and (𝑛 + 1) is even:

This occurs exactly when 𝑛 is an odd multiple of 3 (3, 9, 15, . . . ).

There are 33 such 𝑛 less than 200.

(b) 𝑛 is a multiple of 3 and (𝑛 + 1) is a square:

Checking all the squares between 1 and 200 as possibilities for (𝑛 + 1):
𝑛 + 1 (square) 𝑛 is 𝑛 a multiple of 3?

4 3 yes
9 8 no
16 15 yes
25 24 yes
36 35 no
49 48 yes
64 63 yes
81 80 no
100 99 yes
121 120 yes
144 143 no
169 168 yes
196 195 yes

So there are nine of these.

However, we have counted five of them before (𝑛 = 3, 15, 63, 99, 195), so there are 4 new
possible values of 𝑛.

(c) 𝑛 is a cube and (𝑛 + 1) is even: for these we need n to be an odd cube:

𝑛 = 1, 27, 125
(𝑛 + 1) = 2, 28, 126

There are three of these, but again we have counted one of them before (𝑛 = 27), so there
are 2 possible new values of 𝑛.

(d) 𝑛 is a cube and (𝑛 + 1) is a square:

It is easiest to check the possible values of (𝑛 + 1) for the cube values of 𝑛 to see if any are
square:
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𝑛 (cube) 𝑛 + 1 is (𝑛 + 1) a square?
1 2 no
8 9 yes
27 28 no
64 65 no
125 126 no

So there is 1 more value of 𝑛.

Hence in total there are 33 + 4 + 2 + 1 = 40 values of 𝑛 such that 𝑛𝑛 is a cube and (𝑛 + 1)𝑛+1 is a
square.
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4. 𝐴𝐵𝐶𝐷 is a rectangle with area 6 cm2.
The point 𝐸 lies on 𝐴𝐵, 𝐹 lies on 𝐵𝐶, 𝐺 lies on 𝐶𝐷

and 𝐻 lies on 𝐷𝐴. The point 𝐼 lies on 𝐴𝐶 and is the
point of intersection of 𝐸𝐺 and 𝐹𝐻, and 𝐴𝐸𝐼𝐻 and
𝐼𝐹𝐶𝐺 are both rectangles. One possible diagram is
shown to the right.
Given that the combined area of 𝐴𝐸𝐼𝐻 and 𝐼𝐹𝐶𝐺 is
4 cm2, find all possible values for the area of rectangle
𝐴𝐸𝐼𝐻 in cm2.
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Solution

Say that the lengths in cm of 𝐴𝐵 and 𝐴𝐷 are 𝑥 and 𝑦 respectively.

We are given that 𝑥𝑦 = 6.

Note that 𝐴𝐸𝐼𝐻 is similar to 𝐴𝐵𝐶𝐷, because they share a diagonal (meaning the ratios of
their sides are the same). Then we know that, for some value of 𝑘 (with 0 < 𝑘 < 1), 𝐴𝐸 = 𝑘𝑥

and 𝐴𝐻 = 𝑘𝑦.
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�
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�
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:H

Hence 𝐸𝐵 = (1 − 𝑘)𝑥 and similarly 𝐻𝐷 = (1 − 𝑘)𝑦.

We know that the shaded area is 4, and so

(𝑘𝑦) (𝑘𝑦) + (1 − 𝑘)𝑥(1 − 𝑘)𝑦 = 4
𝑘2𝑥𝑦 + (1 − 2𝑘 + 𝑘2)𝑥𝑦 = 4
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Since 𝑥𝑦 = 6, this becomes:

6𝑘2 + 6(1 − 2𝑘 + 𝑘2) = 4
12𝑘2 − 12𝑘 + 2 = 0

6𝑘2 − 6𝑘 + 1 = 0

6
(
𝑘 − 1

2

)2
− 1

2
= 0

𝑘 − 1
2
= ±

√
1
12

𝑘 =
1
2
±
√

3
6

(Since 0 <

√
1
12 < 1

2 , both of these values of k are between 0 and 1.)

The area of 𝐴𝐸𝐼𝐻 is 𝑘2𝑥𝑦 = 6𝑘2.

If 𝑘 = 1
2 +

√
3

6 , the area = 6𝑘2 = 6
[

1
4 +

√
3

6 + 3
36

]
= 2 +

√
3.

If 𝑘 = 1
2 −

√
3

6 , the area = 6𝑘2 = 6
[

1
4 −

√
3

6 + 3
36

]
= 2 −

√
3.

It is straightforward to show that each of these areas is possible (e.g. by drawing a 6 × 1
rectangle).

Note: the same conclusion can be reached by equating the sum of the unshaded regions to 2
(they are, in fact, each equal to 1).
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5. Find all real numbers 𝑥, 𝑦, 𝑧 such that 𝑥2 + 𝑦2 + 𝑧2 = 𝑥 − 𝑧 = 2.

Solution

First, we claim that 𝑦 = 0.

Proof: if 𝑦 ≠ 0 then 𝑦2 > 0, so we have 𝑥2 + 𝑧2 = 2 − 𝑦2 < 2.

Since 𝑥 = (2 + 𝑧), we have:

(2 + 𝑧)2 + 𝑧2 < 2
4 + 4𝑧 + 2𝑧2 < 2
𝑧2 + 2𝑧 + 1 < 0

(𝑧 + 1)2 < 0

Which is not possible, so 𝒚 = 0.

Given that 𝑦 = 0, we have 𝑥2 + 𝑧2 = 2. We can proceed in a similar way to above, substituting
𝑥 = (2 + 𝑧):

(2 + 𝑧)2 + 𝑧2 = 2
4 + 4𝑧 + 2𝑧2 = 2
𝑧2 + 2𝑧 + 1 = 0

(𝑧 + 1)2 = 0

Hence (𝑧 + 1) = 0 so 𝒛 = −1, and from this we deduce 𝒙 = 1.

It is straightforward to check that these values satisfy the original equations, so the only solution
is (𝑥, 𝑦, 𝑧) = (1, 0,−1).
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6. Humpty buys a box of 15 eggs, with 3 rows and 5 columns. Each meal he removes
one egg to cook and eat. If necessary, he moves one or more eggs in the box so that
between meals there are always two lines of reflective symmetry. What is the smallest
total number of extra egg moves he can make while he empties the box?
Note: You must carefully justify that your answer is minimal; that it is impossible to
make fewer extra egg moves while emptying the box.

Solution

Label the 15 egg spaces as in the diagram on the right.

First, note that, if there is currently an odd number of eggs in the box,
there must be one in space H, since this is the only space which does not
reflect onto (at least) one other space.

A B C D E
F G H I J
K L M N O

Also note that, every time Humpty removes an egg, the number of eggs in the box changes
from even to odd (or vice versa).

So if the box has an even number of eggs in it, Humpty must, after removing an egg, move an
egg into the central space to retain symmetry.

Humpty removes an egg from the box when it contains an even number of eggs seven times, so
there must be at least seven egg moves.

Now consider eggs in the four corner spaces (A, E, K and O). If one of these spaces contains an
egg, all four must (since they reflect onto each other), and if one of them is empty, all four must
be.

So when Humpty first removes an egg from one of these spaces and does not move an egg into
the space he has just created (which must occur at some point because he is emptying the box),
he must move the eggs out of the remaining three spaces, which requires three egg moves (of
course, one of these moves may be moving an egg into space H).

An identical argument can be applied to the four spaces B, D, L and N.

So we know that there must be at least 11 egg moves: three out of A, E, K and O, three out of
B, D, L and N and at least five more into H (assuming two of the seven moves required into H
were done when moving the sets of three eggs).

It turns out that it is possible to empty the box while making only 11 egg moves (for example
see below), so we know 11 moves must be the minimum.

step remove from move(s) total moves
1 H —
2 G I to H 1
3 H — 1
4 F J to H 2
5 H — 2
6 A E to H, K to G, O to 1 5
7 H — 5
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step remove from move(s) total moves
8 G I to H 6
9 H — 6
10 B D to H, L to G, N to I 9
11 H — 9
12 G I to H 10
13 H — 10
14 C M to H 11
15 H — 11

A graphical representation of this is shown below.

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

an egg

an empty space

an egg which has just been moved elsewhere

an egg which has just been removed from the box
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